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SUMMARY

This project (NAG 9-574) was meant to be a three-year research project. However, due to
NASA'’s reorganizations during 1992, the project was funded only for one year. Accord-
ingly, every effort was made to make the present final report as if the project was meant to
be for one-year duration. Originally, during the first year we were planning to accomplish
the following: (1) we were to start with a three-dimensional flexible manipulator beams
with articulated joints and with a linear control-based controllers applied at the joints;
(2) using this simple example, we were to design the software systems requirements for
real-time processing, introduce the streamlining of various computational algorithms, per-
form the necessary reorganization of the partitioned simulation procedures, and assess the
potential speed-up realization of the solution process by parallel computations.

The three reports included as part of the final report address: (1) the streamlining of
various computational algorithms; (2) the necessary reorganization of the partitioned sim-
ulation procedures, in particular the observer models; and (3) an initial attempt of recon-
figuring the flexible space structures. We wish to state that much of the real-time effort
via parallel computations will continue under a NSF grant as part of High Performance
Parallel Computing Initiative. Other two aspects also constitute important attributes for
real-time simulation of space operations. As such, they will also be pursued through other
grants in the near future.

We thank Dr. John Sunkel for encouraging us through the difficult period of what turned
out to be a short, intense yet productive endeavor.
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Recent Developments in Time
Integration Methods for
Structural and Interaction
System Dynamics

K. C. Park

University of Colorado at Boulder, USA

9.1 INTRODUCTION

This survey is a follow-up on earlier ones (Park [1]; Park and Felippa [2]; Felippa and
Park [3]; Park [4]) on direct time integration methods. The algorithmic characterization
of the integration formulae offered therein, namely, stability, accuracy and implement-
ation aspects, remains largely intact. Readers wishing to familiarize the algorithmic
characterization may refer to the references cited above plus Hughes and Belytschko
(51 :

What we are about to cover herein reflects a steady shift of research thrusts in
computational dynamics since the mid-1980s, from discipline-oriented dynamics to
system-oriented dynamics, from sequential computations to parallel computations,
and from efficiency/accuracy concem to system model improvements/refine-
ments. The specific topics we survey in this chapter thus reflect their maturing stages;
these developments do not fit into a coherent theory or categorization at the present
time,

Since time integration algorithms have been presented within the context of linear
structural dynamics for most instances, first we report on computational methods for

non-linear multibody dynamics. Major challenges in the development of computational
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260 TIME INTEGRATION METHODS FOR SYSTEM DYNAMICS

methods for multibody dynamics analysis have been the conservation of both energy
and momentum, system constraint violations, and simulation speed. We will address
some of these issues. .

The second topic we will report is methods for the solution of coupled-field
problems, primarily methods for control-structure interaction (CSI) problems. The
design, modelling, analysis and real-time operation of CSI systems are one of the
most intensely researched activities in recent years with applications ranging from
aeroelastic tailoring, vibration control of reflectors deployed in low-earth orbits, to
active vibration control of suspension systems. The third topic we will present is a
computational method for transient thermal-structure interaction problems. This
technique is relevant to the analysis of the thermal response of high-speed transport
plane as well as integrated electronic chip thermal management problem.

9.2 SOLUTION TECHNIQUES FOR MULTIBODY DYNAMICS

The equations of motion for multibodies are characterized by two key features:
highly nonlinear kinematical relations and complex constraints. It is not the purpose
of this chapter to make an exhaustive survey of available solution techniques. Rather,
we will examine selected techniques that meet our needs: computer implementability,
adaptation to large-scale simulation, robustness and efficiency, in that order.

There are three aspects of solution techniques for multibody dynamics (MBD)
analysis. First, we must have at hand an efficient and accurate algorithm for updating
the kinematical quantities such as angular orientations, angular velocities. Second,
direct time integration of the equations of motion that correspond to the unconstrained
states of multibodies must be performed. Third, an accurate and efficient treatment
of constraints is essential if the numerical solution is to maintain the given holonomic
and nonholonomic constraints. In practice, the three aspects are intertwined so that
one must achieve a careful balance in the employment of three computational aspects.
As computer implementation of the three require different strategies, we will discuss
them separately first and bring them together in the solution procedures.

The numerical solution procedure for MBD systems which we describe herein is
termed a staggered MBD solution procedure that solves the generalized coordinates in
a separate module from that for the constraint force (Park and Chiou [6]; Park ¢t al.
[7. 8]). A major advantage of such a partitioned solution procedure is that additional
analysis capabilities such as active controller and design optimization modules can
be easily interfaced without embedding them into a monolithic program. The solution
of the equations of motion for constrained multibody systems, unlike typical structural
dynamics problems, must satisfy at each time step the system constraints, whether
holonomic or non-holonomic or time-specified manoeuvres. Because of this distinctive
requirement, the reliability and cost of a multibody analysis package can be strongly
affected by how efficiently and accurately the constraints are preserved during the
numerical solution stage.

The system constraint forces can be either eliminated or retained depending upon
the complexities associated with the elimination process. In general, it is preferable
to eiiminate the constraint degrees of freedom if they are associated only with open
rigic links. On the other hand, if external torque or active control devices are
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attached to those joints, it is computationally more advantageous to solve the
constraint forces (or Lagrange multipliers) simultaneously together with the general-
ized coordinates. Unfortunately, a straightforward way of computing the Lagrange
multipliers can often lead to an unacceptable level of errors. The task of minimizing
the propagation error due to -violations of the constraint conditions is known as
stabilization. We will describe a particular constraint stabilization which recasts the
algebraic constraint conditions to a set of parabolic differential equations such that
the constraint forces can also be integrated in time.

To solve for the generalized coordinates of the multibody system, the equations
of motion are partitioned according to the translational and the rotational coordinates.
This sets the stage for an efficient treatment of the rotational motions via the
singularity-free Euler parameters. The translational part of the equations of motion
is integrated via a standard central difference algorithm. The rotational part is treated
by a modified central difference algorithm in order to preserve the discrete angular
momentum. Once the angular velocities are obtained, the angular orientations are
updated via the mid-point implicit formula employing the Euler parameters.

When the two algorithms, namely, the modified central difference algorithm for
the rotational coordinates and the implicit staggered procedure for the constraint
Lagrange multipliers, are brought together in a staggered manner, they constitute a
staggered explicit-implicit procedure as detailed below.

9.2.1 Equations of motion for multibody systems

To motivate ourselves for the development of solution procedures for the multibody
dynamics problems, let us introduce the following equations of motion:

Md=Q-B"A, d= {“} (9.1)

dd d) =0 ' (9.2)

where M is the system mass matrix, d is the generalized velocity vector, u is the
translational degrees of freedom, @ is the angular velocity vector, B = d®/dd is the
constraint projection matrix, 4 is the constraint force vector, ® are the constraint
conditions that are imposed either on the subsystem boundaries or on the kinematical
relations among the generalized coordinates, f is the time, (°) denotes time
differentiation, and Q is the generalized applied force plus non-linear inertia forces.

We observe from (9.1) and (9.2) that the task for solving the governing
multibody dynamical equations constitutes three computational procedures: accurate
computations of the constraint force, 4, or their elimination from the equations of
motion (9.1), updates of the angular orientations, and the direct integration of the
translational displacement u. To this end, we will first examine two distinctive ways

of handling 4.
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9.2.2 Techniques for handling constraint conditions

In principle, it is better to eliminate the constraint conditions, if possible, if the
corresponding forces are not needed for design or interface with other analysis
modules. For example, if the system consists of open-tree configurations and no
active controller is applied, then it is best to eliminate the joint constraint attributes.
On the other hand, when the system includes multiple closed-loop configurations or
active controllers are present on several joints, then it becomes important to compute
the Lagrange multipliers as accurately as possible.

First, one can easily eliminate the system constraint forces via a coordinate
partitioning strategy whenever any or all of the system components possess an
open-tree topology. In the second procedure, we present a stabilization procedure
for solving the Lagrange multipliers. A distinct feature of this stabilization procedure
is that it can be implemented in a stand-alone module, thus can be interfaced not
only with the equation solver for rigid-body systems but with that for flexible-body
systems as well.

Parailel implementation of coordinate partifioning technique

In this technique, a projection matrix that spans the null space of the constraint
Jacobian matrix ®, is first constructed (see, e.g., Wehage and Haug [9]). A parallel
methodology (Chiou [10]; Chiou et al. [11]) based on an arrowhead algorithm then
can be applied to the resulting complementary set of equations of motion. We will
present the procedure for open-tree systems. For a system that contains closed loops,
a cut-joint technique can be used so that the present scheme can be equally applied.

Let us introduce a projection matrix A such that, when its transposed matrix acts
on the constraint force BT 4, it gives

ATB"A=o0. 9.3)

This projection matrix can be obtained by expressing the total generalized velocity
d" = <u"@") in terms of the independent velocities d’ and their time derivatives
as '

d=Ad, d=Ad+Ad (9.4)
Due to the property of (9.3), premultiplying the equations of motion (9.1) by AT
yields :
A™d = ATQ. 9.5)

In conventional procedure, d in the above equation is replaced by (9.4b) and d’
is then solved from the reduced equations of motion. In the solution to be described
below. instead of solving the reduced equations of motion, we augment (9.4b) to
(9.5) to form an arrowhead matrix equation:

M -MA|}d| |MAd 06
—A™ o df |-ATQ '
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which can be partitioned as

— Fon 4 3

[ M, 0 0 Dy, d, 8:
0 M, 0 Donsy d, 8
0 0 M, Diwsy 1 a.s L _ g.s \ 9.7)
0 0 0 o Dasn : :
: : M., d,‘ 8n
LDusry Dusin Davry o - o 1 Ud" ‘g’

where n is the total number of bodies in the system. Decomposed in a manner
convenient for parallel computations, one obtains

M,&,--&-D(,-,,,H,a':gi, j=1...n

N 4 9.8
z D(n + l.Ddi = g[ ( )
j=1

where

ZDtn+l.i) = - ZA;‘TM;" D pen = —MA, j=L...n
i=1

j=1 i=
g = (MA&’),, j=1...n g/=- Z ATQ,.
j=1
Each diagonal submatrix M; represents the local mass matrix which is decoupled
and can be factorized concurrently. An off-diagonal submatrix Dy;,, ,, denotes the

coupling between connecting bodies in the system. Since M is a constant matrix,
(9.8) becomes

ai =My I Dy neny d/ — g) (9.9)

Substituting (9.9) into (9.8b) gives a form of Schur complement:

Z D(r|+ 1 ;')M)'_‘l D(j.n+ Ua, = Z D(n+ l,j)M;‘_l Qj - Z D(n+].ﬂAal' (910)
j=1

j=1 j=1

The preceding treatment of the reduced equations of motion provides several
parallel computational features. First, the parallelism can be exploited by mapping

_._each processor onto a group of bodies so that independent computations such as___

the left-hand side of (9.10) can be performed concurrently. Second, since M is a
constant mass matrix, it needs to be factored only once. Third, to solve for &, a
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parallel sparse solver may be utilized. Finally, once d is obtained, computations of
d from (9.4) is also easily parallelizable.

Stabillzation of constraint violations

When the Lagrange multipliers cannot be eliminated or are to be retained for other
purposes, one must solve for them. It has been known for some time that a
straightforward direct time integration of the governing differential equation (9.1),
augmented with a linearized form of the system constraints (9.2), often incur
unacceptably high errors in the numerical solution. Of several techniques proposed
to date, perhaps the method proposed by Baumgarte [12, 13] is the earliest known
stabilization technique for computing the constraint forces.

While the method due to Baumgarte works relatively well, it requires an a priori
determination of stabilization parameters and the method breaks down when the
number of independent system constraints change due to varying configurations. To
cope with the varying system constraints without experiencing singularities, a
penalty-based stabilization has been developed in Park and Chiou [6). The penalty
procedure recasts the constraint equation in the form

A= 1cx> ' (9.11)
4

as the basic constraint equations instead of (9.2) for both the holonomic and non-
holonomic constraint conditions. We then time-differentiate, for the holonomic case,
the above penalty-based equation to obtain:

i= %B&, d= {“} (9.12)

The numerical solution to the above companion differential equation is effected
as follows.

The constrained equation of motion (9.1) is integrated once using the implicit
integration rule

a.-l;z = ('1" + 5an+1/2, 6 — ﬁ
2
to vieid
"i.-;: = SM_.I (Qn+1/2 _ BT1"+"2) + aw' (913)

This expression is substituted into (9.12) to obtain the stabilized differential equation
for the Lagrange multipliers
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sin+l/1 + SBM~-'BT1"*"2 = SBM™! Qn+1/2 + Bd".

When the above equation is integrated once more with the trapezoidal rule, we
obtain the following discrete update for A:

(el + *BM'BNHA"* V2 = gl" 4 ¢} (9.14)

n+1/2

1t = FBMTIQ" ' + §Bd”. (9.15)

The solution procedure for 4 presented above can now be invoked in a staggered
manner in conjuction with the generalized coordinate solver to be described below.

9.2.3 Time integration of MBD equations of motion

Once 4 is computed by the procedure in Section 9.2.2 or d when using the
partitioning algorithm, one still needs to compute d, u and the angular orientations
and their parameters at each time step. This task is carried out by employing an
explicit—implicit transient analysis algorithm that exploits the special kinematical
relationships of the generalized rotational coordinates vs. the angular velodity,
namely, the Euler parameters. First, the integration of the translational coordinates
and the angular velocity is accomplished by the central difference formula. It should
be mentioned that the use of the central difference formula does impose a step-size
restriction due to its stability limit (w,,, h < 2) where w,,, is the highest angular
velocity of the system components for rigid-body systems or the highest frequency
of the entire flexible members for flexible-body systems. The simplicity of its
programming effort and robustness of its solution results can often become compelling
enough to adopt an explicit formula, which is the view taken here.

Explicit transiational coordinate integrator

In the conventional structural dynamics analysis, explicit time integration of the
equations of motion by the central difference formula involves the following two
updates per step:

l:lr|+]/7. = ﬁn—l/l_*_ hli"

un+1 —_ un + hﬁn+l/2.

(9.16)

Unfortunately, the same integrator is not directly applicable to the rotational part
of the equations of motion since @ is not directly integrable to yield the total
rotational quantities except for some special kinematic configurations. This motivates
us to partition d into the translational velocity vector, 1, which is directly integrable
and the angular velocity vector, @, which is not, and treat them differently, viz.:
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d= {"} d= {"} (9.17)
w w

The equations of motion can be written according to the above partitioning as

o el {8

where

b T
{Q“} _ { £, — D,(i) — S,(u, q) 3“1} 019
Q. fo — D,(®) —S,(uq) — B 4
in which the subscripts (u, @) refer to the translational and the rotational motions,
respectively, f is the external force vector, D is the generalized damping force
' including the centrifugal force, S is the internal force vector including member
flexibility, q is the angular orientation parameters, B, and B, are the partition of the
combined gradient matrices of the constraint conditions (9.2).

First, assume that u™* ' and q"*'"2 are already computed so that we can compute
ﬁn+ 172 and é)"+ 1/2:

ﬁﬂ+ 172 _ Q“
{(bn+x!1} = M ! {Qm}. (9.20)
Second, update the translational velocity at the step (n + 1) by
“xté-l _— l'l" + hﬁn+llz‘ (921)
Third, we update the translational displacement, u, by

WV = gtV e (9.22)

The updating of the angular orientations must be treated with care, and is described
below. :

Updating of angular velocity via discrete angular momenturn conservation

In order to update the angular velocity and angular orientations, we combine
judiciously a momentum-conserving form of the central difference algorithm and the
mid-point irelicit rule for computing the Euler parameters as follows (Park and
Chiou [14]).

First. we -etain the basic central difference formula for computing the angular
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velocity at the half steps:
@V = " 4 hay” . (9.23)
where @ is computed from thé equations of motion, utilizing the angular velocity

obtained from the discrete angular conservation law, as described shortly.
Second, @™*"* is used to integrate the Euler parameters by

. _1lo0o-—w|
q= E[w _(b]q = Alw)q (9.24)

where q = (g,4,4,4,)" are the Euler parameters expressed in the body-fixed frame
and @ denotes the skew-symmetric angular velocity tensor given by

0 —-w o,
»= o, 0 —-w|. (9.25)
-, , 0

Implicit integration (9.24) by the mid-point rule yields

qn+] —- qn —_ hqn+lll = hA(wn+lll)qn+llz
h (9.26)
= EA(w"+l,2)(qn+l + qn)
where A(@"*) can be viewed as the tangent matrix at the mid-configuration
whereas q"*' = (q"*' + q")/2 is the mid-point average value. It was shown in Park

et al. (7] that q"*" can be expressed as

T+ 1 I h n+ 172 i n
q =ZI+EA(‘° )| q _ (9.27)

where A = 1 + H(w? + w? + wl)/4.

The updated Euler parameters q"** are then normalized to satisfy the constraint
condition S

n+1 n+1

q q =1L (9.28)

Once q"*" is available, the angular orientation at #"*" is then obtained by

R =g — D1+ 239" — 248 §=(4,9,9) (9.29)

where the superscript (n + 1) is omitted on q.
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Third, the angular velocity @"*" that is needed to compute @ for the next step
integration is obtained via a discrete version of the angular momentum conservation
law:

me,,+1 _ men — htn+1/2 (9.30)

where M, is the moment of inertia, @ is the angular velocity vector, and t is the
applied moment, all expressed in body-fixed frame at the configuration #, 0 < k < n.
For computational simplicity, we will choose k = 0, i.e. the initial configuration so
that (9.30) becomes

(R"+1)TM“,(D"+1 — (Rn)Tmen — h(RnH/z)'rrnn/z (931)

where the matrix R is the rotation transformation matrix from the inertial basis e to
the body fixed configuration b according to

b" = R"e (9.32)

and M, @ and 7 are now expressed in the superscript-indexed discrete b-bases.
Therefore, the discrete angular momentum equation (9.30) becomes

@ =M IR ((R")T M,o" + h(R"“”)TQ.,,"“”) - 933)

where 7 is replaced by Q,, from the lefthand side of (9.18).

It is noted that, whereas the standard difference formula (9.16) satisfies the linear
momentum conservation for constant and linearly varying Q,, (9.33) indicates that
the use of a common basis is essential for the conservation of angular momentum.
A similar approach was successfully utilized by Simo and Wong [15] in their
development of a family of implicit algorithms.

Fourth, the angular acceleration needed for the next time step (n + 1) is then
computed ‘or each rigid body by

& = Mu—)l(an\—l _ 6)"+IMmG)"+‘). (9.34)

Equations 9.23)—(9.34) constitute the present modified central difference algorithm
for integrazing the rotational equations of motion in multibody systems. However,
as many engineering multibody systems involve both holonomic and nonholonomic
constraints. the computation of Q"*' is not as straightforward as (9.18) implies.
For a momentum-conserving implicit algorithm, the reader may consult Simo and
Wong 15 For applications of the preceding MBD procedures to flexible multibody
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dynamics, one may refer to Downer [16], Downer ¢f al. [17] and Downer and Park
[18], who solve the flexible appendage deployment problem, among others. Finally,
other MBD recent approaches can be found in Haug and Deyo [19].

9.3 ALGORITHMS FOR CONTROL-STRUCTURE INTERACTION
SIMULATION ’

A second topic we should like to report in this survey is computational methods for
the simulation of dynamic response of structures that are subject to active control
forces. A general case of structural response under active control forces involves
both large-angle rigid motions as well as transient flexible vibrations. Engineering
examples include the manoeuvring of robotic arms, satellite attitude changes,
deployment and vibration control of large space structures, and active vibration
suppression of rotating machinery and vehicle suspension systems.

When relatively small size models are adequate for describing the predominant
motions and vibrations, the resulting active control strategies also can consist of a
small number of actuators and sensors. However, as the structural model needs to
be large due to the physical nature of the problem or due to the high-precision
requirement, so must be the size of the actuator/sensor numbers. It is for such large-
scale control-structure problems that the following simulation methodology has been
developed.

Specifically, simulation tasks for control-structure interaction (CSI) problems involve
several computational elements and discipline-oriented models such as structural
dynamics, control law synthesis, state estimation, actuator and sensor dynamics,
thermal analysis, liquid sloshing and swirling, environmental disturbances, and
manoeuvring thrusts and torques. Because each of these computational elements can
be large, it is usually not practical to assemble these computational elements into a
single set of equations of motion and perform the analysis in its totality, which will
be referred to as the simultaneous solution approach. First, the equation size of the
total system can be simply too large for many existing computers. Second, the
simultaneous solution by treating the coupled interaction equations as one system
may destroy the sparsity of the attendant matrices, thus requiring excessive
computations and storage space. Most important of all, any changes in the model
or in the computational procedures will engender significant modifications of the
required analysis software modules and hence require a painstaking software
verification effort.

In order to alleviate the aforementioned difficulties that exist in the simultaneous
solution approach, a partitioned solution procedure that takes the following consider-
ations into account has been developed. First, software development of any new
capability is costly and time-consuming; thus, if at all possible, it is preferable to
utilize existing single-field analysis modules to conduct the coupled-field interaction

. analysis. Second, the tasks for model generation and methods development of each -

field are best accomplished by relying on the experts of each single-field discipline.
In order to accommodate both the software considerations and the single-field
expertise, a partitioned (or divide-and-conquer) analysis procedure has been developed
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for control-structure interaction analysis for direct output feedback systems (Belvin
[20]; Park and Belvin [21]). The procedure abandons the conventional way of treating
the CSI problems as one entity. Instead, it treats the structure (or plant), the observer,
and the controller/observer interaction terms as separate entities. Thus, the CSI
problem is recognized as a coupled-field problem and a divide-and-conquer strate
adopted for the development of a real-time computational procedure. It should be
mentioned that a similar concept has been successfully applied to other interaction
analyses such as fluid-structure interactions (Park ef al. [22]), multi-structural interaction
systems (Park [23]; Felippa and Park [3]; Park and Felippa [2]), earth dam and pore-
fluid interactions (Park (23] Zienkiewicz et al. [24] and multibody systems with
constraints (Park ef al. [7]; Chiou [10}; Downer [16]).

The partitioned analysis procedure hinges on two software and computational aspects.
First, at each discrete time increment, the equations of motion for each discipline are
solved separately by considering the interaction terms as external disturbances or
applied forces. Second, when necessary, computational stabilization and accuracy
improvements are introduced through augmentations and/or equation modifications.
It is important to note that such partitioned solutions of each discipline equation can
be carried out on either a sequential or a parallel machine if certain message passing
and memory-conflict issues are handled appropriately.

9.3.1 Equations of motion for control-structure inferaction sysfems

The discrete equations of motion for control-structure interaction systems may be
described by [25]

Structure: @ Mij+Dg+Kq=f+Bu+Gw )
q(0) = q, q(0) = q,
Sensor output: (b)) z=Hx + v

Estimator: (© Xx=AX +Ef+Bu+1L, f (9.35)
x(0) =0
Control force: (d) u= — Fx
Estimation error: fe) y=z— (H,q + H,&) J
* where
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0 1 _ [ o
A= = , = F.l.
[—M-‘K —-M“‘D]' 5 [M“B] F=F Kl

In the preceding equations, M is the mass matrix, D is the damping matrix, K is
the stiffness matrix, f(t) is the applied force, B is the actuator location matrix, G is
the disturbance location matrix, q is the generalized displacement vector, w is a
disturbance vector and the superscript dot denotes time differentiation. In (9.35b), z
is the measured sensor output. The matrix H, is the matrix of displacement sensor
locations and H, is the matrix of velocity sensor locations. The vector v is
measurement noise. The state estimator in (9.35¢) is assumed to be based on either
the Kalman filter (Kalman and Bucy [26]) or a Luenberger observer [27] if the system
is deterministic. The superscript ~ denotes the estimated_states. The actuator output,
u, is a function of the state estimator variables, § and §, and F, and F, are control
gains determined for example by pole—zero placement or from the solution of an
optimal control problem. The observer is governed by L, the filter gain matrix. For
the special case where L, is the null matrix (i.e. § = g), a second-order state estimator
can be expressed as

Mgq + Dq + K§ = f + Bu + ML,y. (9.36)
The effect of the above simplification on the observer stability and convergence is
discussed in detail in Belvin [20] and Belvin and Park [28].
9.3.2 Simultaneous solution approach

The numerical solution of (9.35) by the simultaneous solution approach begins with
appropriate initial conditions, the feedback gain F and the filter gain L. The structure
equation is written in first-order form :

x = Ax + Ef + Bu + Gw (9.37)

where

G = [Mf’, G].

The control gains and observer gains can be synthesized independently by noting
that the stability of the structural system and the observer error stability are
uncoupled. Introducing the error equation by the deterministic form (9.35) as

é=x—i={‘.‘_‘:‘} (9.38)
q4—q
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and eliminating u yields

L -

The stability of (9.39) is governed by the stability of [A — BF] and [A — LH].
Thus, the control gain F is suitably chosen from the matrix [A — BF] and the
observer gain L from the matrix [A — LH). :

Subsequently, the simultaneous solution approach eliminates u and z from (9.35a, ¢)
and then solves the observer based closed-loop equations

Gl ammaf B oo

The embedding effects of both the controller and the state observer result in an
unsymmetric and non-sparse system matrix of dimension (4N by 4N), where N is
the number of structural degrees of freedom. Solution of (9.40) would require
considerable software modifications of existing structural dynamics analysis programs
for large-scale CSI simulation purposes. In addition to losing the computational
advantages associated with the finite element based CS equation, the simultaneous
solution approach requires the control law to be embedded into the observer model.
If the control law includes actuator, sensor and/or controller dynamics, additional
states must be added to the observer. This greatly complicates the observer model
and requires significant software development for each class of control law dynamics.
The difficulties associated with the simultaneous solution approach have prompted
development of a partitioned solution approach for the CSI equations as described
below.

9.3.3 Stabilization for computations of control force and estimation
error

The partitioned solution procedure numerically integrates the structural equations of
motion (9.35a) and the observer equation (9.35¢) by treating the control force u and
the estimation error y as if they were applied terms in the right-hand sides. In this
way, simulation of control-structure interaction systems using the partitioned solution
procedure can be carried out by a judicious employment of three software modules:
the structural analyser to obtain g, the state estimator to obtain q, and the stabilized
solver for the control force u and the state estimation error y. Thus the partitioned
procedure becomes computationally efficient and can preserve software modularity
by exploiting the symmetric matrix form on the left-hand sides of (9.35a) and {9.35¢).

However. computations of the control force u and the state estimation error y by
(9-35d) and :2.35e), respectively, can not only lead to an accumulation of errors but
often can give rise to numerical instability. Hence, in order to make the partitioned
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solution procedure robust, it is imperative to stabilize the partitioned solution process
and/or numerically filter the solution errors in computing u and 7. This is addressed
below. ,

First, we time-differentiate (9.35¢) to obtain

u=Fq-Fg (9.41)
Substituting q from (9.36) into the above equation, one obtains

u+FM 'Bu= —F,M~'p + L.y) - Fg (9.42)
where the generalized rate of momentum p is given by

P = (f — D3 — Kg) (9.43)

The parabolic stabilization that led to equation (9.42) for computing the control
law is sometimes called an equation augmentation procedure as it has not altered
any part of the basic governing equation (9.35) except one time-differentiation of u
assuming U exists. However, this assumption is later removed through time
discretization as will be shown later in the chapter.

It is noted that the homogenous part of (9.42) has the filtering effect of the form
(sSI + FM™'B)™" in parlance of classical control theory, where s is the Laplace
transform operator, thus achieving the required stabilization. From the computational
viewpoint, although F,M~'B is in general a full matrix, its size is relatively small,
as the size of u is proportional to the number of actuators placed on the structure.

Similarly, for the observer estimation error 7 one can stabilize its computation
first by time-differentiating it

7+ HLy=z2— Hp+ HgJ). (9.44)

and substituting the observer equation into the above to obtain an augmented form
of the observer error equation:

YHLy =z —-HM ™ '(p + Bu) — H,§ (9.45)

9.3.4 Stabilized partitioned equations and solution process

~ The adoption of the second-order observer and the preceding stabilization thus
replaces (9.35¢), (9.35d) and (9.35¢) by (9.36), (9.43) and (9.45), respectively, as
summarized below.
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Structure: @ Mq+ Dq+Kq=f+Bu+ Gw
q(o) = qO' q(o) = qo
Sensor output: (b)) z=Hx + v

Estimator: (© Mq+Dq+Kg=Ff+Bu+MLy (9.46)
q0) =0, gO0)=o0

Control force:  (d) @+ F,M™'Bu= — F,(M"! p+Ly —Fgq
Estimation error: (e) ¥ + HLy=z-HM™ (5 + Bu) — H,i']

Note that the difference between the original governing equation set (9.35) and the
above stabilized set (9.46) is an obstacle to computation of the control forces and
the state estimation error vector.

9.3.5 Stabiltly and accuracy of partifioned solution procedure

Computational stability analysis of partitioned procedures for a general coupled
system is still in an evolving stage. Hence, the analysis herein applies the relevant
results from (Belvin [20]; Park and Belvin [21]) in the present stability analysis of the
partitioned CSI solution procedure. The partitioned CSI solution procedure presented
in (9.46), even when discretized by unconditionally stable implicit time integration
formulae, may still suffer from computational instability as it involves extrapolations
to obtain u"*'? and y"+ 12 A complete stability analysis of the partitioned solution
procedure for the coupled structural dynamics, observer and controller equations is
difficult to perform unless the observer characteristics H, L and the controller
characteristics B, F are specified. Hence, the analysis that follows is restricted to an
ideal observer, ie. y = 0. In what follows, it is assumed that all of the stabilized
equation set is time-discretized by a mid-point version of the trapezoidal rule.

In order to assess the computational stability of the present partitioned solution
procedure, we construct a model single degree-of-freedom interaction equation as
follows. First, neglecting structural damping a modal structural equation of motion
can be expressed as

y" —+ a)zy = —y (947)

where y is a generalized coordinate and @ is its associated frequency.
Second, the model controller is assumed to consist of both the position and
velocity feedback with appropriate weights given by

u=noly +lwy, o.<o <o, (9.48)

where @, is the feedback frequency, which ranges from the minimum to the maximum
of the structural frequency contents, and 1 and { are positive scalar coefficients that
signify the strength of the position and the velocity feedback, respectively.

Combining (9.47) with the stabilized form of (9.48) we have the model interaction
equation as
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V+oy=—u

i+ (ou = oy — low’y. 049
Thus, the model interaction equations given by (9.49) represent the case of full state
feedback. They do not, however, reflect the mode-to-mode coupling that can occur
in reduced-order feedback controller. Nevertheless, an analysis of the computational
stability using the above model interaction equations should shed insight on the
overall stability of the present partitioned solution procedure.

Time integration of the above model problem (9.49) by the mid-point rule

J:n-O-llz = " + 5£_n+1/2
i_n+1/2 — iu + 6x~n-&llz (950)
In+l —_ an+l/2 — xu

with y = 0 yields

_‘/;+1/2 — yv + 5!7-

1+ 6w, *'* = (o} — dlww’)y* ' + (o.y"

(1 + Sy 1 = — Fur+12 4 v+ Oy (9.51)
AR N R Yy 27V —

un+l _— r’wfyn-f-l + CCOJ."H

where y* "% is a stable predictor that is needed to initiate the staggered solution.

Computational stability of the above difference equation can be assessed by
seeking a non-trivial solution in the form

un+1 un
= 9.52
{w} {f} 52

such that
<1 (9.53)
for stability.
Substituting (9.52) into (9.51) and eliminating y, one obtains

u .
I{ } =0 (9.54)
Y

where

. [5(1 +8w)(A + 1) 46w — Snewd) + 2w (1 — /1)]
A + 1y (1+ Sw)(d + 1 — 44 )
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In order to test the stability requirement (9.53) on the characteristic equation, i.e.,
det{]] = 0, one transforms [4| < 1 into the entire left-hand plane of the z-plane by

A= i J_r z A< 1<>Rel(z) < 0. (9.55)

Carrying out the necessary algebra we have from det{J(z)) = 0 the following z-
polynomial equation:

(Plww* — Fnw? + 1)22 + (Mw,)z + S (nw? + w?) = 0. (9.56)

A test of the polynomial equation (9.56) for possible positive real roots by the
Routh—Hurwitz criterion (Ganthmacher [29]) indicates that the partitioned procedure
as applied to the model coupled equations (9.47) and (9.48) give a stable solution
provided

Flow* — §nw? + 1) > 0. (9.57)

Note that, if there is no position feedback (i.e., 1 = 0), the model interaction equations
solved by the present partitioned solution procedure (9.46) yields unconditionally
stable solutions as (9.57) is automatically satisfied. Hence, a more critical stability
assessment can be made by assuming no velocity feedback (i.e. { = 0) for which we
have for stability from (9.57)

hs —7
Vo,

The preceding stability analysis on the model interaction equations permits us to
make the following observations. First, equation (9.58) indicates that feedback
frequency (w,) and the strength of the position feedback (1) dictate the computational
stability and not the structural frequency (w). In other words, the position feedback
dictates the allowable step size for stability. Thus the highest frequency of the
controller governs stability, not the highest frequency of the structure. Since most
controllers are designed with reduced order structure models that ignore high
frequency dynamics, the present solution procedure is not unduly restricted by
stability. Second, if velocity feedback is present, the allowable step size for stability
increases until { > \/ (4n’ /27), at which point the solution becomes unconditionally
stable.

It should be noted that, instead of the stabilized form of control force equation
(9.46d) or {9.49b), if the scalar form of (9.48) is used in the preceding stability
analysis, the resulting stability limit is given by

(9.58)

- mm(.z_, _<) ©.59
{w,” nw,
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Assuming { « 1, the first term in the above condition allows a sufficiently large step
size. However, since {/n =~ 1 for a balanced control law, it imposes a step-size
restriction h = 2/w,, which approaches the limit imposed on by a typical explicit
integration formula. This proves the advantage of the present stabilized partitioned
solution equation (9.46) solely from the computational stability viewpoint.

Although not elaborated herein, a stability analysis that includes an observer
model and the state estimation error equation has been conducted with the following
parameter choices:

1 0
L= [121 IzzL H= I:O 1:| (9.60)

in conjunction with the structural model and the controller model already used in
(9.49). The analysis result yields the following step-size restriction: :

2 2

h < min (g—wt,y'%z)—c,ﬁ) (9.61)

It should be noted that /,, corresponds to the Kalman filter gain magnitude which
can be adjusted to be sufficiently small compared with @?* as can be assessed from
equation (9.39b). Hence, provided I,, < w,, the condition given by (9.58) is seen to
govern the maximum stable step size by the present partitioned solution procedure.

For the general multidimensional case governed by (9.46), one observes that the
stiffness proportional control force in practice reaches only a fraction of the total
internal force (u = 7Kq, # « 1). Hence, even for a distributed stiffness proportional
control configuration where @, —+ w,,,,, the stable step size given by (9.58) should
be much larger than the maximum stable step size of a typical explicit integration
algorithm (say, h,,,, < 2/@,,.,). Therefore, the computational efficiency of the present
partitioned solution procedure is established.

9.4 SOLUTION METHODS FOR COUPLED THERMAL-STRUCTURAL
ANALYSIS

Coupled thermal-structural problems are becoming a major challenge in many
engineering disciplines such as supersonic planes, satellites, superelectronic chips, and
jet and combustion engines. Following the finite element formulations proposed by
Wilson and Nickell [30], Nickell and Sackman [31], Oden [32], and Oden and
Armstrong [33], among others, the semidiscrete coupled thermal—structural governing
equations can be written as '

Mi + Da + Ku — CO =f

. 9.62
QO +HO+6°C'i =r 9.62)

where M, D and K are the mass, damping and stiffness matrices, and f is the
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prescribed structural loading vector; Q, H and C are the heat capacitance, heat
diffusion and thermal expansion coupling matrices, and r is the external heat source,
respectively; and 0, is the reference temperature.

9.4.1 Conventional Implicit solution procedures

Suppose we are given two software modules, a structural analyser and a thermal
conduction transient analysis module and are tasked to perform the coupled response
analysis given by (9.62). The simplest way is then to move the coupling terms C8
and CTi in the above equation to the right-hand sides and treat them as if they are an
applied force and an additional source term, respectively. This will permit the use of
two single disciplined-oriented software modules for the analysis of coupled problems.
Computationally, this amounts to employing the following staggered solution procedure:

Mi"* "2 + Dirt Y2 4 Ku't V2 = fr+v2 4 C0:+!/2
(9.63)

Q9n+l/2 + H0n+ 172 = r}x+l/2 _ eocT“lrhi-I/Z

where 07* 2 is the predicted temperature. It turns out that if CTa"* /2 is predicted instead
of "%, one ends up with the same accuracy and stability limits (Park
etal. [22)).

While the above implicit—-implicit staggered procedure is simple to implement, it can
be shown that it is only conditionally stable, even though the implicit integrators used
to integrate the left-hand sides of (9.62) are algorithmically unconditionally stable. The
stabilization procedure that we will describe is a mid-point rule modification of Farhat ef
al. [34]).

9.4.2 Stabilization of implicii-implicit staggered solution procedure

Stabilization of a general staggered solution procedure for coupled-field problems can be
accomplished either by a differential-level stabilization and algebraic-level stabilization.
Inthe past both stabilization strategies have been employed for fluid—structure problems,
coupled pore fluid—soil interactions, and structure—structure interaction problems (Park
et al. [22]; Park [23]; Felippa and Park [3); Park and Felippa [2)).

In general one can stabilize the implicit—implicit procedure by modifying both or
just one of the two field equations. A successful stabilization is the one that minimizes
the impact of stabilization in terms of software modification and computational
overhead. Of several stabilization strategies studied, a concurrent adaptation of both
differential and algebraic-level augmentations was found to yield the most attractive
staggered procedure. We now outline the stabilization process.

First, we employ a mid-point version of the trapezoidal rule as
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9n+l/2 - 9:1 + 5yn+l/2

A+ 172 n+5'n+l/1
y y Y (9.64)

n+1/72 __oon

y

n+1/2 __ =on

y

yn+l —_ Zy
9n+l —_ 29

where y can be either the displacement or the temperature vector in (9.62) and § is
one-half of the step size, § = 1/2At, and At is the time step size.
Second, time discretization of the thermal coupled equations (9.62b) to obtain

(Q + SHY* " = 6+ 2 + QO — 80,CTa* 2. (9.65)

Note that in the above difference equation, the unknown structural coupling term is
associated with the velocity w*'2 It is this vector that has been found to play a
key role in stabilization of the present procedure. In order to stabilize the extrapolation
of the coupling term, we utilize an integrated form of u"*'* from the structural
equation (9.61a):

ﬁn+l/2 — B[Ml.l" + 5(fn+llz _ Kun+1/2 + C0n+ 1/2)]

9.66)
B=M +4éD)"". (
Upon substituting the above expression into (9.65), we obtain
G0n+1f2 — Rn+l/2 + 5290CTBK|1:+I/Z
Rn+l/1 = 5rn+1/2 + QON _ 590CTB(MI.1" + 5f"+1/2)
(9.67)

G =Q + dH + §6,C"BC
u:'l' 172 —_ un.
It is observed that the solution matrix G for the thermal equation is augmented with
the additional matrix 6’6,C"BC and the prediction of *'? is replaced by
OBKu;*'2. Also, note that the predictor for u’*'? is simply the previous step
solution which has been found the most stable predictor when used in con-
junction with the trapezoidal rule (Park [23]).

Once the thermal equation is stabilized as described above, the structural equation
(9.62a) can be integrated in an existing structural analysis program as if the term C@
is an external force at each integration step. Time discretization of (9.62a) by the
mid-point rule (9.64) yields '

Eun+l/2 _ Fu+l/2 + 52Con+‘[/2
" E=M+6D + 6K
Fr+1% = 8412 4 M(u" + 8i") + 6Du"

968 T
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The updating procedure for states at time step (n + 1) is achieved as follows:

W = gt
@ = 20— wyS — i

07t =207+ _ g

W= MU 4 COT — Digt ! — Kurt
W= T + i)

ut = w4 St )

0"+ = Q7' - 6,CTartt — HOY

07" ="+ 66" + o,

(9.69)

9.4.3 An analysis of stabilily and accuracy of stabliiized procedure

Stability of the staggered procedure presented in (9.67)—(9.69) can be assessed by
adopting an analysis procedure, for example, outlined in Park [4]. First, we assume
that the step-by-step numerical solution for a uniform step integration can be
characterized by

Y=y (9.70)
Hence, computational stability is maintained if

Al < 1. (9.71)
In order to invoke the well-known Routh—Hurwitz criterion, we map the stable

zone, [4| < 1, onto the left-hand side of a z-plane by the following idempotent
transformation:

un+! un
I..l"+]’ l'ln

TS L) (9.72)
o+ 1~z o

0n+l an

Substitution of (9.70) and (9.72) into (9.67)—(9.69) with D = 0 yields

M + K —0*C uwl o ©.73)
— (1 =290,C'"M™'K  2Q + z0H + 8*9,C’M-'C || & | = | o |*

whose characteristic equation is obtained from



9.4 COUPLED THERMAL-STRUCTURAL ANALYSIS 284

Det| M2’ + VMéz* + 6*K + 6,CQ'C™ + 6*6,CQ'C"™M~'K)z
+ 6°VK| =0 (9.74)

where

V = CuC”’
U=Q 'HICTC)~ .

The reader may find a complete stability analysis in Farhat et al. [34]. Hence, we
offer the following synopsis. First, for a two-degree-of freedom problem, we have

M=1 K=«, Q=4 H=h C=c (9.75)
which, when substituted into the above characteristic equation, gives
a2 + a2 +az+a,=0 (9.76)

where
2 2 eoc'z 2.2 3 2
a, =1, a, = 0g, a, = éw +—qm(1+5w)], a, = &’qw’.

Since d, h, g, @* 8, c? and m > 0, all the coefficients of the polynomial (9.76) in z
are positive. Moreover, the quantity

a,a, — aa, = G.hc*S*mg*(1 + Hw?

is also positive, which demonstrates that the stabilized staggered solution procedure
is unconditionally stable for the 2-d.o.f. model problem.

For multi-dimensional cases, the limiting case of K = 0, which gives rise to a
quadratically growing structural response due to thermal coupling, can be used as a
pathological test: '

[Mz? + 6VM:z + 6%0,CQ~'C"| = 0. (9.77)

Since M is positive definite and the other two matrices are at least semi-definite, the
stabilized staggered procedure for this limiting case is unconditionally stable via
Bellman's theorem [35] as successfully utilized in Park [23]. Hence, we conclude that
the procedure given by (9.67)—(9.69) is unconditionally stable.

order accurate. This can be done first by expanding the difference equations (9.67)—
(9.69) and using the goveming coupled semidiscrete equations (9.62) where needed.

- As for accuracy, it can be shown that the stabilized staggered procedure is second- -
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9.4.4 Computational sequence
When we ignore structural damping, diagonal structural mass and diagonal capacitance

matrix, the stabilized computational procedure can be summarized as follows:

R™Y2 =642 + QO™ — 60,C"Bli" + SM ™ (£"+ 12 — Ku"] (9.78)
(Q + 6H + 66,CTM~'C)9"+V2 = R+ 112 (9.79)
Fri2 = §%m+12 4 My + 0u") + 6Du" + 52CO"+12 (9.80)
M + K"+ 2 = pr+12 (9.81)

u’,'“ =" _
g7+ = 20" _ ¢~

W =M 4+ CO — Kt _

u"t =9+ S + 6 : (9.82)
"t =+ @ + i)

0’n+1 = Q-—l(rn+l _ eoch-ln+1 _ Hén+l)

0"*'= 0" + 50" + &),

The key for the efficiency of the above procedure compared with other candidate
procedures is to utilize the matrix C"TM~'C, which appears in the left-hand side of
(9.79) and is a symmetric banded matrix. Other possible stabilization involves
CQ™'C" into the left-hand side of (9.79), which has much larger bandwidth than
the former.

Some two-dimensional solutions of the thermal-structural interaction problems
based on the above procedure are reported in Farhat ef al. [34].

9.5 APPLICATION EXAMPLES

In the preceding sections three computational methods for performing coupled-field
dynamics analyses have been surveyed. It is anticipated that as the analyst demands
more realistic models, all the single-field components, viz,, structures, control, thermal
and multibody systems, may have to be included in a typical analysis. An example
would be a satellite undergoing solar panel deployment as well as attitude stabilization
and vibration control. Two examples that we include are a scenario of shuttle-based
assembly of the space station for one-cargo segment, and a vibration control of a
genesic Earth-observing platform when it is subject to a reboosting thrust.
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MB-1 MB-2

Figure 9.1 Incremental construction of space station. (Courtesy McDonnell Douglas Space Systems
Co)

9.5.1 Manoeuvring of the SRMS with prescribed motion consiraints

Figure 9.1 illustrates the assembly of the first and second modules of the space
station to be deployed and assembled. Each module is lifted by the shuttle remote
manipulator system (SRMS) from the shuttle cargo bay and deployed for the first
module and subsequently assembled into the partially assembled space station. In
order to simulate the assembly process, first, we have studied the effect of the SRMS
dynamics due to the required manoeuvring constraints. This incremental in-space
construction of the space station must meet stringent geometry, weight and stiffness
requirements as shown in Figure 9.2. The arm boom assemblies comprise two thin-
walled graphite-epoxy circular sections called the upper arm, lower arm and end
effector. These arms are connected by a shoulder joint (modelled by a universal
joint), an elbow joint (modelled by a revolute joint) and a wrist joint (modelled by

a spherical joint). The properties of the joints and arms are shown as follows (Hunter
et al. [36]): :

(1) Upper arm: (2) Lower arm:

Young’s modulus: Young's modulus:
E, = 1.27 x 10"'Pa E, = 1.09 x 10" Pa
Shear modulus: Shear modulus:

G, = 3.18 x 10™Pa G, = 3.30 x 10"°Pa
Length: L, = 6.38m » Length: L, = 7.06 m
Cross-section area: Cross-section area:
A, =00022m* , A, = 0.0015 m
Moment of intertia: Moments of inertia:
I, =316 x 10~°m* I =219 x 10~°m*

Weight: W, = 24.97kg Weight: W, = 24.06 kg
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Properties of SRMS:

s Weight = 410 Kg

« Length=15m

»  Cross Section Area = 0.0022 m?

*  Young's Module = 1.27 X 10" Pa

+  Shear Module = 3.18 X 10 P3

o Density = 1.2 X 10¢ Kg/m?

+ Tip Maneuvering Speed (without payload) = 0.6 m/s

WRIST PiTCH  WRIST CCTV
JOINT & LIGHT
WRIST YAW gnd EFFECTOR
LOWER ARM | JOINT
ELBOW CCTV 00N By
& PAN/TILT UNIT N
IR
| h N

340 MPM « MANIPULATOR POSITIONING MECHANISM
SHOULDER MRL = MAMIPULATOR NETENTION LATCH

ongrren TAW ST NOTE  AMS JETTISON INVEAFACE (S AT BASE
LONGEROW OF MPM ON LONGERON

Figure 9.2 Shuttle remote manipulator system [34].

(3) End effector: (4) Joint weights:
Length: [, = 1.82m Shoulder joint weight:
End effector weight: W, = 117.13kg
W, = 107.14kg Elbow joint weight:
W, = 53.12kg
Wrrist joint weight:
W, = 84.44kg.

The effect of the motion constraints to the orbital motion stability can be assessed
by modelling (1) both the space shuttle and the SRMS modeled to be rigid, (2) the
shuttle to be rigid and the SRMS as a flexible beam (discretized into 4 elements and
5 nodal points). By imposing angular velocity (a cubic type) at the tip of the SRMS
(Figure 9.3), the manipulator will slew through 90° with respect to the space shuttle.
Figures 9.4 and 9.5 illustrate the pitching angles of the rigid and flexible SRMS, and
Figure 9.6 shows the angular velocity of the rigid and flexible SRMS. Note that the
terminal velocities of the flexible case are non-zero, implying that the SRMS
manoeuvring would trigger vibrations on the space shuttle modules after assembly.
To overcome this difficulty, a more refined SRMS manoeuvring motion is necessary
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Figure 9.7 Imposed translational and angular motions at the tip of SRMS.

as described in Chiou ef al. [37). By adopting the refined starting and stopping
conditions, the in-space construction of the space station can be divided into the
following stages:

1. manoeuvring of the SRMS to the position where its end effector is ready to
attach the space structure which is lying in the shuttle cargo bay;

2. contact/impact when the end effector of the SRMS collides with the space
structure;

3. manoeuvring of the SRMS with the space structure to attach to another space
structure which is floating in space;

4. contact/impact when the SRMS with the space structure collides with another
space structure in space.

For the first stage, the motion constraints for the tip of the SRMS are given by
Figure 9.7 where 25 seconds of manoeuvring time is used to place the end effector
of the SRMS to the position where the space structure/payload is located. As
indicated in Figures 9.8 and 9.9, the angular velocity vectors for the upper arm and
i o lower arm of the rigid and flexible SRMS experience almost the same behaviour in
terms of trends and magnitudes which prove that the present motion constraints are
valid in manoeuvring the rigid and flexible SRMS. At the second stage, where the
contact/impact has occurred, the end effector of the SRMS is approaching the
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Figure 9.9 Angular motions of upper arms.



9.5 APPLICATION EXAMPLES 289

5 x103 Contact Velocity of the End Effector and the Strucmfc '

B
z
8
o 4
>
s 252 254 256 258 26 262 264 266 268 27
Time, sec
1 . Coqtact Accrclcratioq of the §nd Effcgtor and l'he Slmcgun: i}
%
E
k: ]
E
_3 i A 1 A A . 1 i s
25 252 254 256 258 26 262 264 266 268 7
Time, sec

Figure 9.10 Contact velocity and acceleration of the end effector.

structure with velocity equal to —0.01m/s (Figure 9.10(a)). When two bodies make
contact at 25, the velocity of the end effector drops from —0.01 m/s to 0.0018 m/s
to almost Om/s in less than one second of contact/impact time. From Figure 9.10(b),
the contact/impact provides a peak acceleration (—2.4m/s? on the end effector
which eventually dies down because of the large mass ratio between the end effector
and the structure. At the third stage, the SRMS lifts the structure with a motion
constraint that is given by Figure 9.11. The purpose of this motion constraint is to
manoeuvre the structure into the position where the previously existing structure is
located so that the assembly of two structures can take place via contact/impact.
From Figures 9.12 and 9.13, even though the angular velocities of the flexible SRMS
still maintain the trends as in the rigid SRMS case, the high vibration modes can
easily be seen as the stopping conditions of the flexible SRMS are applied.
Consequently, due to these vibrations, the non-zero terminal velocities have occurred,
which makes the assembly of the two structures very difficult to carry out. In
conclusion, since the current motion constraints cannot provide the zero terminal
velocities for the flexible SRMS, the control strategy in damping out these vibrations
needs to be studied in order to proceed to the final stage of the present construction
process. In Figure 9.14, the contact/impact of the fourth stage has been carried out
by using the rigid SRMS model that the velocity of the approaching structure is
—0.01m/s which produces of accelerations for both assembling structures during
1.8s of contact/impact time. Note that after two seconds of contact/impact, both
structures are traveling with the same velocity as indicated in Figure 9.14(a).
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Figure 9.12 Response of lower arm during third stage.
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Figure 9.14 Contact velocity and acceleration during third stage.
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9.5.2 Confirol of earth-observing platform

The computational efficiency achieved by the partitioned solution procedure as
compared with the conventional solution method is sketched out in Figure 9.15.
Assumed in the construction of the chart are the ratio of the bandwidth and the
stiffness matrix to be 0.2, the number of the actuator and that of the sensor to be
the same, and the ratio of the structural degrees of freedom and those of the actuator
to be 0.1. Note that, given a real-time processing computer that can perform a wall-
clock rate of 200 samples/second command and control, the conventional method
can at most handle the real time control of a simple beam articulation, whereas the
partitioned method can handle the real-time control of complex truss-beam vibrations.
For nonlinear problems, the advantages of the partitioned method is more pronounced,
as can be seen from the chart.

The partitioned CSI simulation procedure as derived in (9.46) has been
implemented as a stand-alone package (Park et al. [38]). The present software
implementation emphasizes the use of the widely available sequential and paralled
analysis modules specially developed for the solution of structural dynamics equations.
Note that the solution algorithm for both the structural system and the state estimator
is the same, hence the software module, provided the right hand terms are treated
as applied forces. Although the stabilized form of the controller and the filtered
measurements are solved in a coupled manner, their size in general is substantially
smaller, typically a fraction of the size of the structural system for large-scale
problems.

Figure 9.16 illustrates a test-bed evolutionary model of an Earth-pointing satellite.
Eighteen actuators and 18 sensors are applied to the system (see Figure 9.16 for
their locations) for vibration control and their locations are provided in Tables 9.1
and 9.2. Figures 9.17-9.19 are representative of the responses for open-loop, direct
output feedback, and dynamically compensated case does drift away initially even
though the settling time is about the same as that by the direct output feedback
case. However, the sensor outputs are assumed to be noise-free in these two numerical
experiments. Further simulations with the present procedure should shed light on
the performarce of dynamically compensated feedback systems or large-scale systems
as they are computationally more feasible than heretofore possible.

Tables 9.3 and 9.4 illustrate the computational overhead associated with the direct
output feedback vs. the use of a dynamic compensation scheme by the output present
Kalman filtering equations, compared in those tables are for two simpler tests cases,
viz, a 3-d.o-. system and a truss beam model. In the numerical experiments herein,
we have reliec on the Matlab software package for the synthesis of both the control
law gains anc the discrete Kalman fil